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The present work investigates the dynamics of two-dimensional, steady bubbly flows 
over a surface and inside a symmetric channel with sinusoidal profiles. Bubble 
dynamics effects are included. The equations of motion for the average flow and the 
bubble radius are linearized and a closed-form solution is obtained. Energy 
dissipation due to viscous, thermal and liquid compressibility effects in the dynamics 
of the bubbles is included, while the relative motion of the two phases and viscous 
effects a t  the flow boundaries are neglected. The results are then generalized by 
means of Fourier synthesis to the case of surfaces with slender profiles of arbitrary 
shape. The flows display various flow regimes (subsonic, supersonic and super- 
resonant) with different properties according to the value of the relevant flow 
parameters. Examples are discussed in order to show the effects of the inclusion of 
the various energy dissipation mechanisms on the flows subject to harmonic 
excitation. Finally the results for a flow over a surface with a Gaussian-shaped bump 
are presented and the most important limitations of the theory are briefly 
discussed. 

1. Introduction 
This paper represents part of a study of the role of the dynamics of bubble volume 

changes in the fluid mechanics of bubbly or cavitating flows. Specifically, it 
investigates the effects of the inclusion of the bubble dynamic response in two- 
dimensional steady flows over surfaces with slender profiles. One of the practical 
objectives of this study is a better understanding of the global effects of many 
bubbles in cavitating flows. Traditionally bubbly cavitating flows have been 
analysed starting with a calculated or measured pressure distribution from the non- 
cavitating or single-phase flow around, say, a hydrofoil. This is then applied as a 
known input to the Rayleigh-Plesset equation in order to calculate the bubble 
volume as a function of position along a streamline. This traditional approach 
neglects the interactive effect which the bubble growth may have on the pressure 
distribution, an effect that will increase in magnitude with the number and the 
extent of the bubbles. While the traditional approach may have validity close to 
cavitation inception when only an occasional bubble occurs, i t  clearly loses validity 
as the cavitation becomes more extensive. Significant alterations will occur in the 
pressure distribution and in the geometry of the region of cavitation. I n  water-tunnel 
tests Gates (1977) observed that laminar separation of the boundary layer on a 
hemispherical-nosed body was delayed and ultimately eliminated by increasing the 
number of small bubbles or nuclei present. Moreover, separate tests in which the free- 
stream velocity was varied suggest that the above phenomenon was not caused by 
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the ‘turbulence ’ produced by the bubbles. Rather the observations suggest that the 
bubbles alter the pressure distribution in such a way as to delay separation. These 
observations have critical consequences for cavitation inception estimations because 
of the intimate relation between the cavitation inception number and the coefficient 
of pressure at the laminar separation point (Arakeri & Acosta 1973). More recent 
experimental observations by Arakeri & Shanmuganathan (1985) and M. Billet 
(1986, personal communication) have also helped identify the bubble interaction 
effects in cavitating flows. The photograph and acoustic measurements of Arakeri & 
Shanmuganathan clearly demonstrate that increasing the number of bubbles 
decreases their growth and results in a decline of the noise produced per bubble. 

One of the objectives of this paper is to provide some guidance as to the nature of 
these alterations. Despite the extensive linearizations inherent in the analysis we 
believe that the results convey some qualitative understanding of the nature of the 
changes that occur in a real cavitating flow. 

The last few decades have seen extensive research on the dynamics of bubbly flows 
(van Wijngaarden 1968, 1972). Early studies based on space-averaged equations for 
the mixture in the absence of relative motion between the two phases (Tangren, 
Dodge & Seifert 1949) do not consider bubble dynamic effects. This approach simply 
leads to an equivalent compressible homogeneous medium. In  a classic paper Foldy 
(1945) accounted for the dynamics of individual bubbles treating them as randomly 
distributed point scatterers. Assuming that the system is ergodic, the collective effect 
of bubble dynamic response on the flow is then obtained by taking the ensemble 
average over all possible configurations. An alternative way to account for bubble 
dynamic effects is to include the Rayleigh-Plesset equation in the space-averaged 
equations. Both methods have been successfully applied to describe the propagation 
of one-dimensional disturbances through liquids containing small gas bubbles 
(Carstensen & Foldy 1947 ; Fox, Curley & Larson 1955 ; Macpherson 1957 ; Silberman 
1957). 

However, because of their complexity, there are few reported examples of the 
application to specific flow geometries of the space-averaged equations that include 
the effects of bubble response (van Wijngaarden 1964). One exception is the shock 
wave in a bubbly medium. A number of authors have studied this one-dimensional 
and time-independent (or slowly varying) flow ; a good review of the current state of 
knowledge of bubble dynamic effects on the structure and evolution of shock waves 
can be found in Noordzij (1973). Noordzij & van Wijngaarden (1974) have shown 
that the additional inclusion of relative motion between the bubbles and the liquid 
can lead to some interesting evolutionary effects and permanent wave solutions. 
However in the present programme we focus attention on one- or two-dimensional 
time-dependent flows. In  two earlier notes (d’Agostino & Brennen 1983 ; d’Agostino, 
Brennen & Acosta 1984) we considered the one-dimensional time-dependent 
linearized dynamics of a spherical cloud of bubbles subject to an harmonic pressure 
field and the two-dimensional steady flow of a bubbly liquid over wave-shaped 
surfaces. The results clearly show that the fluid motion can be critically controlled 
by bubble dynamic effects. Specifically, the dominating phenomenon consists of the 
combined response of the bubbles to the pressure in the surrounding liquid, which 
results in volume changes leading to a global accelerating velocity field. Associated 
with this velocity field is a pressure gradient which in turn determines the pressure 
encountered by each individual bubble in the mixture. Furthermore, it can be shown 
that such global interactions usually dominate any local pressure perturbations 
experienced by one bubble due to the growth or collapse of a neighbour (see $7). 
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In  the present work the same approach, generalized with the inclusion of 
dissipative effects in the dynamics of the bubbles, is first applied to steady two- 
dimensional flows over wave-shaped surfaces (for which there exist well-established 
solutions for the compressible and incompressible cases) and then is extended to the 
case of arbitrarily shaped surfaces with slender profiles. Despite all its intrinsic 
limitations, the following linear analysis indicates some of the fundamental 
phenomena involved and represents a useful basis for the study of such flows with 
nonlinear bubble dynamics, which we intend to discuss in a later publication. 

2. Basic equations 
Following the same approach as previously indicated in our earlier notes 

(d’ilgostino & Brennen 1983 ; d’ilgostino et al. 1984), several simplifying assumptions 
are introduced to obtain a soluble set of equations which still reflects the effects of 
bubble dynamic response. The relative motion of the two phases is neglected, 
although its inclusion is also possible (the limitations this imposes are discussed in 
$7) .  The liquid is assumed inviscid and incompressible, with density p and constant 
concentration p of bubbles per unit liquid volume. Also, the mass of the dispersed 
phase and all damping mechanisms in the dynamics of the bubbles are initially 
neglected. The effects introduced by the inclusion of the liquid viscosity and 
compressibility on the energy dissipation in the dynamics of the bubbles will be 
considered later. Then, if external body forces are unimportant, the velocity v(x) and 
the pressure p ( x )  (defined as the corresponding quantities in the liquid in the absence 
of local perturbations due to any neighbouring bubbles), satisfy the continuity and 
momentum equations in the form : 

where D/Dt indicates the Lagrangian derivative, r ( x )  is the individual bubble 
volume and P is related to the void fraction 01 by: Pr = a/(l -a). Finally, under the 
additional hypothesis that the bubbles remain spherical, i t  follows that 7 = $rR3, 
with the bubble radius R(x)  determined by the Rayleigh-Plesset equation (Plesset & 
Properetti 1977 ; Knapp, Daily & Hammit 1970) : 

Here S is the surface tension and p ,  is the bubble internal pressure, which consists 
of the partial pressures of the vapour p ,  and non-condensable gas p,. Neglecting 
thermal and mass diffusion effects within the bubbles, p ,  is assumed constant and 
p ,  is expressed by the polytropic relation of index q :  p ,  = p,o(R/R,)3g,  where pG0 is 
the gas partial pressure a t  the reference radius R,. Mass diffusion effects and other 
non-stationary phenomena are not, of course, included in the present theory. The 
determination of the polytropic index q requires the solution of the energy transfer 
problem across the bubble surface, as shown later in this Section. For now its value 
remains undetermined in the range from 1, in the isothermal limit, to y ,  the ratio of 
the specific heats of the non-condensable gas in the bubbles, which corresponds to 
isen tropi c conditions. 
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FIGURE 1. Schematic of a bubbly liquid flow over a wave-shaped surface 

Equations ( l ) ,  (2) and (3), together with suitable boundary conditions, represent, 
in theory, a complete system of equations for u(x),  p ( x )  and T ( x ) .  However, in 
practice their highly nonlinear nature requires further simplifications for a closed- 
form solution to be attained even for very simple flows. 

3. Dynamics of bubbly flows over surfaces with slender profile 
We consider first the problem of a two-dimensional inviscid flow of a bubbly liquid 

over a wave-shaped surface, as shown in figure 1 .  Let the wall profile be defined in 
complex notation by thc equation: ~ ( z )  = e exp (ikz) with hx < 1 and let the 
subscript 0 indicate the unperturbed condition corresponding to e = 0. Then, if the 
flow velocity is Uo and assuming, for simplicity, that all the bubbles have the same 
radius R,, the undisturbed pressure in the liquid is: 

2s 
Po = PGo+Pv--. 

Ro 
(4) 

We limit our analysis to  the case of relatively low void fraction a = /3r/(1 +PT) so 
that we can make use of first-order small-perturbation theory and write the velocity 

with u and u much smaller than U,. Here the pressure changes are not restricted to 
be small with respect to the equilibrium pressure because large perturbations of the 
pressure can result from the velocity field generated by the bubble volume changes, 
even though only small modifications of the fd ly  wetted velocity field actually occur 
in low-void-fraction flows. Then ( l ) ,  (2) and (3) reduce to 

au av 47c aR3 -+- = (1-a0)/3Uo--, ax ay 3 ax 

au aP 
(1-a) u-=- -  

o  ax ax’  
av ap 

(1-a) u-=--  
o a x  a y ’  ( 7 )  
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Finally, eliminating u and v from (5), (6) and (7) and using (8), one obtains the 
following equation for R(x, y) : 

where V2 is the two-dimensional Laplacian. Furthermore, the linearized kinematic 
condition a t  the wall : v(x, y,)/U, = dy/dx results in the following boundary condition 
for R(x,  y) : 

where yw is the ordinate of the wall profile corresponding to e = 0. In  addition the 
solution is required to be periodic in x with wavenumber k. 

The nonlinear equations (9) and (10) do not have any known analytical solution. 
I n  order to investigate their fundamental behaviour, we therefore examine the 
linearized form of these equations for small changes of the bubble radius: R(x, y) = 
R,[l+'p(x,y)], where v(x,y) < 1.  Then, to the first order in 'p: 

where wB is the natural frequency of oscillation of a single bubble a t  isothermal 
conditions in an unbounded liquid (Plesset & Prosperitti 1977; Knapp et al. 
1970) : 

3PG, 2s w; = __-- 
PRi PRi 

(13)  

and 

is the low-frequency sound speed, i.e. in the absence of dispersive effects (van 
Wijngaarden, 1980). If the bubbles are in stable equilibrium in their mean or 
unperturbed state, then 3pc, > ZS/R, and both wB and c, are real. 

When surface tension and vapour pressure are neglected (14) reduces to the well- 
known expression for the low-frequency sound speed of a homogeneous mixture (van 
Wijngaarden 1980). Similarly, in the reference frame moving with the flow free 
stream U, a/ax = - a/at, U,Z a2/ax2 = a2/at2 and (1 1) transforms into the familiar two- 
dimensional wave equation for the propagation of acoustical disturbances in a 
bubbly medium in the absence of energy dissipation (van Wijngaarden 1980) : 

The corresponding dispersion equation for waves of the form expi(h.x-wt) is 
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where c,, is the speed of propagation of an harmonic disturbance of'angular 
frequency w .  The present derivation of (1 l ) ,  however, has the advantage of explicitly 
formulating the boundary-value problem (9) and (10) which has to be addressed 
when the hypothesis of linearized bubble dynamics is relaxed. 

The solution of (1 1) for the case of an unbounded bubbly flow over a wave-shaped 
wall is 

Here G is the principal square root (with non-negative real and immaginary parts) 
of 

where M = UO/cmw is the flow Mach number based on the sonic speed corresponding 
to the frequency w = kU, experienced by each bubble during its motion past the 
wavy surface. The other possible solution involving exp (ikx+Gky) has been 
eliminated since in the subsonic regime (0 < M 2  < l)q(s, y) must be finite as 
y-f + 00, and in the supersonic regimes (M2 > 1 and M 2  < 0) no disturbance can 
propagate from the wall in the upstream direction. Therefore in the domain y 2 0: 

eikx-Gky 

u(x, y) = u, + u, sk ~ 

G '  

In  the case of a wave-shaped channel of semiwidth b, the symmetry about the 
centreline y = b provides the second boundary condition for the velocity : w(x, b) = 0 
and the linearized solution of (1 1) takes the form 

U;/Ri (cosh Gk(b - y) 
w&-k2U: sinhGkb 

R(x, y) = Ro + R, sk( 1 - 01,) 

cosh Gk(b - y )) eikx ( sinhGkb c' 
sinh Gk(b - y) eikz 

u(s, y) = u, + u, ek 

v(x, y) = iU,sk 
sinhGkb , 

cash Gk(b - y)) eikz 
P ( X > Y )  = p , - ( l - a )  u ' '( sinhGkb 7' 

Energy dissipation in bubbly flows naturally originates from various sources such 
as viscosity, heat and mass transfer in the two phases and sound radiation from the 
bubbles. In  particular, viscous effects occur owing to the interaction of the flow with 
the boundaries, to the relative velocity of the two phases, or as a consequence of the 
motion induced by the volume changes of the bubbles. In  the further development 
of the theory of bubbly liquids over surfaces with slender promes we only consider 
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the most important forms of damping which occur in the dynamics of the bubbles 
owing to thermal effects and to the viscosity and compressibility of the liquid. 
However, to the same order of approximations used here, the inclusion of the relative 
motion is indeed possible, as we intend to discuss in a later work where we consider 
the simultaneous solution of the fluid-dynamic equations for the two phases with the 
relevant interaction terms. The results of this analysis show that the relative motion 
slightly modifies the expression of the Mach-number parameter G2 and generates, as 
expected, additional damping, but that its overall effects on the flow are usually 
quite small. 

The effects of the liquid compressibility are included by introducing the speed of 
sound in the liquid c = (dp/dp)t and rewriting the continuity equation (1) as 

/3 DT 1 Dp v .  v = ~ 

1 +/37 Dt pc2 Dt ‘ (27) 

In order to account for the viscous dissipation in the bubble dynamics, the Rayleigh- 
Plesset equation (3) is modified as indicated by Keller et al. (see Prosperetti 

where pR( t )  is the liquid pressure at the bubble surface, related to the internal 
pressure p ,  (assumed uniform) by 

Here dots denote Lagrangian time derivatives and ,u is the viscosity of the pure 
liquid. Linearization for small steady-state changes under the action of a periodic 
pressure perturbation p ( t )  = p,( 1 - exp iwt) leads to modelling each individual gas 
bubble as an harmonic oscillator : 

with internal pressure pB(t) = pBo[l -$rp(t)], where 

37192 ’ = 6[0+ 3(y-  1) A _ ]  -i3(y- l)(BA+-2) 

sinh I9 & sin I9 
A +  = - cash I9 - cos 19’ 

(34) 

(35) 

and I9 = R, (2w/xG)+ is the ratio of the bubble radius to the bubble thermal diffusion 
length. The three terms of the effective damping coefficient h respectively represent 
the contributions of the viscous, acoustic and thermal dissipation, while wBW is the 
effective natural frequency of the oscillator when excited a t  frequency w .  Finally, the 
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complex parameters 6 , $  and account for the magnitude ratio and phase difference 
between the related quantities. In  particular, Re($)/3 can be interpreted as the 
effective polytropic exponent of the gas in the bubble and respectively tends to 1 and 
y in the isothermal and isentropic limits for w + O  and w++m (Prosperetti 
1984). 

By means of the Galilean transformation x’ = x -  U, t the above theory can be 
readily applied to the case of a bubbly flow over a wave-shaped surface. Here the 
frequency of the Lagrangian pressure change experienced by each bubble during its 
motion is: w = ICU, and the following linearized approximations 
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D/Dt z - Uo(a/ax), D2/Dt2 U;(a2 /ax2)  

can be used to express the Lagrangian derivatives in the Eulerian coordinates. Upon 
the assumption of a 2nlk-periodic behaviour in the x-direction, damping can be 
incorporated in the theory for the linearized dynamics of bubbly flows over surfaces 
with slender profile. The previous approach leads to a generalized definition of the 
Mach-number parameter : 

(36) 1 6 2  1-M2 = 1 - 2 - -  wk(1 -ikUo Ro/c)  y 2(  wkw - k2U,2 i- i2AkU0 ’ 

which now becomes complex. It can be shown that I m  (G2) 3 0, thus, with the same 
convention as before, Re (G) 2 0 and Im (G) > 0. Note that the effects due to  the 
compressibility of the liquid are small for flow velocities Uo 4 c. The formal 
expressions (19)-(26) for the solution for the flow quantities remain the same, except 
for (19) and (23) which now become 

B(x ,  y) = Ro + R, ek( 1 -ao) (37) 

(1 -ikUo Ro/c)  U,2/Ri 
R ( x , y )  = R o + R 0 ~ k ( 1 - ~ , )  . w i w -  k2Ui f i2AkU0 (38) 

The entire flow has therefore been determined in terms of the material properties 
of the phases, the geometry of the wall profile and of the assigned quantities: ,8, 

Owing to the linear nature of the problem, the above solution can readily be 
generalized to the case of surfaces with arbitrary slender boundaries. If the wall 
profile is denoted by q(x)  and H ( k )  is the Fourier transform of ~ ( x )  such that in 
complex notation 

R,, U0 and po. 

~ ( x )  = /:mH(k) eikzdk, (39) 

then the linearized solution j’(x,y) of (11) admits the following integral repre- 
sentation : 

(40) 

where fk(x, y, k )  is the corresponding wavy surface solution for given k and E = 1.  
Thus, for instance, the normalized bubble radius for the semi-infinite and channel 
flow cases is respectively expressed by 
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and 
(1 - ikU, Role) U i / R i  
o~, , -k2U~+i2hkUo 

-dk, (42) 

where G = G(k), oBw = uBw(kUo) and h = h(kUo). When no damping is present the 
integrands in the above equations have integrable square-root singularities 
corresponding to the sonic condition k = k* and to the bubble resonance condition 
k = k, (see $4).  The latter also corresponds to the essential singularity due to the pole 
of G which appears in the argument of the exponential and hyperbolic functions. In  
(42) the additional singularities due to the finite well spacing k = k, behave as simple 
poles (see $4). In  physical terms this reflects the fact that the absence of damping 
allows the bubble radius response to grow unbounded a t  resonance conditions. This 
difficulty is eliminated by the introduction of dissipative effects which limit the 
bubble response and generate a complex G 2 ,  thus removing the singularity from the 
real k-axis. 

4. Results for undamped bubble dynamics 

case. From (19) and (23) note that the bubble response is singular when : 
We now examine the nature of the above solution considering first the undamped 

(i) G = 0 and therefore the flow Mach number is equal to unity (sonic condition) ; 
(ii) (kUo/wB)2 = 1, namely the exciting frequency experienced by each bubble 

during its motion is equal to the natural frequency of an individual bubble in an 
infinite liquid (bubble resonance condition). 

In  addition, the channel flow is also singular when: 
(iii) Gkb = inn; 
The above conditions can be interpreted in two different ways according to 

whether the free-stream velocity or the wall wavenumber is assumed to be the 
independent variable. The former is the natural approach to the analysis of a given 
geometrical configuration a t  different flow regimes; the latter reflects the point of 
view used in deducing the solution for a more complex wall shape in terms of linear 
superposition of the different harmonic components of the wall profile. 

The quantity G can be considered a function of the reduced frequency kU,/w, and 
of the reciprocal of the dispersion parameter wb/k2ck, when the wall geometry is 
fixed, or of the Mach number parameter Ut/ck  when the flow velocity is constant. 
Consequently, (i) and (ii) can be used to deduce either the free-stream velocities or 
the wall wavenumbers which respectively correspond to sonic and bubble resonance 

n = 0, f 1, +2, .... 

condit,ions 

Similarly, for channel flow, conditions (iii) define the natural modes of the system, 
leading t,o infinite sequences of free-stream velocities or wall wavenumbers : 

(45) 
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For large n these sequences respectively converge to the free-stream velocity and the 
wall wavenumber corresponding to the bubble resonance conditions. For small n the 
behaviour of these sequences is regulated by the values of wk/k2ck  or Ui lck ,  which 
account for the relative importance of dispersion and compressibility effects in the 
flow. When these parameters are of order unity or larger, the lower terms of the 
above sequences will in general extend to values much smaller than the ones given 
by the bubble resonance condition (ii), thus indicating that the natural modes can 
occur a t  comparatively low frequency. On the other hand, when the reverse is the 
case, dispersion and compressibility effects are less significant, and all the terms of 
these sequences are contained in a small range below bubble resonance conditions. In 
this case all the natural modes of the system occur with a frequency only slightly 
lower than the bubble resonance frequency. 

Clearly, the real and imaginary parts of G are respectively responsible for the 
attenuation and the speed of propagation of the wall-induced disturbances in the 
y-direction. The occurrence of bubble resonance and the presence of a finite 
sound speed divide the flow solutions in three different regimes, namely: subsonic 
(0 < M 2  < l ) ,  supersonic (M2 > 1 )  and super-resonant (M2 < 1). As we shall see later, 
this has significant consequences for the behaviour of the flow. In  the subsonic regime 
the wall disturbances can propagate in the upstream direction and the flow 
parameters resemble those of an incompressible flow, with the bubble response 
essentially in phase with the excitation. On the other hand, in the supersonic flows, 
where the perturbations cannot travel upstream, the typical delayed response of 
compressible flows appears and internal modes occur in the presence of suitable 
boundary conditions. Finally, in super-resonant flows the bubbles do not have time 
to respond as quickly as the excitation requires and the flow shows again the 
characteristics of incompressible flows, although the bubble response in this case 
tends to be out of phase with respect to the excitation. 

The bubble response is maximum near bubble resonance conditions and, when 
damping is present, tends to be more localized in the proximity of the excitation 
source. The propagation of disturbances is also strongly affected by the dispersive 
nature of the sonic speed reflected in the frequency dependence of the Mach-number 
parameter G2 in (18) and (36). In general the wall profile can excite the flow over a 
wide range of frequencies, depending on its shape and on the free-stream velocity. 
The spectral components of the wall profile excitation for which the flow is more 
nearly sonic tend to travel larger distances before being attenuated. Usually the 
sonic regime is close to the bubble resonance condition and its effects are therefore 
difficult to isolate, unless the parameters u i l k 2 c h  or U ~ / c ~  are of order unity. For 
this to happen relatively large flow velocities and void fractions are in general 
necessary, as discussed in $ 7 .  

Let us consider first the case of fixed wall geometry and variable free-stream 
velocity. Then the behaviour of the parameter G as a function of the reduced 
frequency is shown in figure 2 for some typical values of w&/k2cct. Since G2 is real (no 
damping) G is either real or purely imaginary. Note that all curves representing 
Re (G) start from unity a t  the origin and tend to move away from their horizontal 
asymptote Re (G) = 1 (corresponding to the incompressible flow case) as the value of 
w i / k 2 c &  increases. Also note that Re (G) vanishes in the supersonic regime between 
the sonic and bubble resonance conditions, where, on the other hand, Im (G) =f= 0. The 
corresponding amplitudes of bubble radius oscillations a t  the wall (kz = in and 
y = 0) for the case of a semi-infinite flow with k ~ / 2 7 ~  = 0.01 are shown in figure 3, 
which also shows the migration of the sonic singularity from the bubble resonance 
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FIGURE 2 .  (a)  Real and (0) imaginary parts of the parameter G versus the square of the reduced 
frequency ( ~ U , / W , ) ~  for different values of w i / k 2 c ;  z 3a , /k2R~ = 0.5 (-----), 1 (-) and 2 
(........ ), 

condition towards the origin for increasing values of the parameter u ~ / k 2 c ~ .  Finally, 
the bubble radius response in the case of the channel flow is significantly different, 
as illustrated by figure 4, because of the presence of the additional resonances (iii) 
introduced by the finite spacing between the boundaries. 

We assume next that the free-stream velocity is fixed and the wall wavenumber is 
allowed to vary. In  this case the curves representing the parameter G as a function 
of the reduced frequency, now shown in figure 5, again display the tendency to move 
away from the horizontal asymptote Re(G) = 1 as the value of the parameter 
Uilc& increases. However, the value of G a t  the origin now depends on the free- 
stream velocity and can be either real, zero or imaginary according to whether the 
flow is respectively subsonic, sonic or supersonic. The normalized bubble radius 
response amplitudes a t  the wall (kx = $n and y = 0) for the case of a semi-infinite flow 
with k / 2 n  = 0.01 are shown in figure 6. Here, as expected from the above 
considerations, when the free-stream velocity increases the sonic resonance moves 
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FIGURE 3. Response of a semi-infinite undamped bubbly flow over a wave-shaped wall as  a function 
of the square of the reduced frequency (kU,/w,)' with ke/2n = 0.01. Normalized amplitudes of the 
bubble radius oscillations at the wall ( k z  = $I and y = 0)  are shown for different values of the 
parameter wk/k2c; x 3a,/kZRi = 0.5 (-----), 1 (-) and 2 (......) . 

I - 50 

- 100 
0 I 

FIGURE 4. Response of a n  undamped bubbly flow in a symmetric wavy-wall channel as a function 
of the square of the reduced frequency ( ~ U , / U , ) ~  with ke/2n = 0.01. Normalized amplitudes of the 
bubble radius oscillations at the wall ( k z  = an and y = 0) are shown for wk/k2c; x 3a,/k2Ri = 1 and 
kb = n. 

from the bubble resonance conditions to  the origin and finally disappears for 
supersonic flows. 

The parameter G also controls another important aspect of the flow, namely the 
penetration of wall-induced disturbances in the y-direction, which (19) and (23) show 
to be inversely proportional to Re (G)k .  I n  effect, when Re(G) is considerably larger 
than unity the response of the layer of bubbles near the wall essentially shields the 
rest of the mixture, with the result that the penetration of the disturbances induced 
by the wall is significantly reduced. On the other hand, as Re(G) approaches zero 
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In general terms the introduction of energy dissipation in the bubble dynamics has 
the consequence of bounding the bubble response a t  the resonance condition, of 
providing smooth transitions between the various regimes and of eliminating higher- 
order internal modes. I n  the rest of this section we consider the case of air bubbles 
(7 = 1.4, xG = 0.0002 m2/s) in water (p = 1000 kg/m3, p = 0.001 N s/m2, S = 0.0728 
N/m, c = 1485 m/s). The other relevant flow parameters are: p ,  = lo5 Pa, 
R, = 0.001 m, e = 0.001 m and, when applicable, k = 2 0 ~  m-l, U, = 250 m/s. 
Further comment on the dimensionless variables and practical values of both the 
dimensionless and dimensional variables is included at  the end of $7. 
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FIGURE 6. Response of a semi-infinite undamped bubbly flow over a wave-shaped wall as a function 
of the square of the reduced frequency (kU,,/w,)* with ka/2n = 0.01. Normalized amplitudes of the 
bubble radius oscillations a t  the wall ( k z  = and y = 0) are shown for different values of the 
parameter U i / $  z 3a, U i / w i  Ri = 0.5 (-), 1 (-----) and 2.5 (......) . 

In  the damped case the effective bubble resonance frequency wB,,,(w), (32), is a 
function of the exciting frequency, w = ICU,, and extends from the value corre- 
sponding to isothermal conditions in the bubbles (w = 0 and q5 = 3), equal to the 
definition in the absence of damping, to the isentropic value reached in the limit 
for w + + co. In what follows, normalization has been carried out with respect to 
the bubble resonance frequency wB defined as the solution of the equation: 
toB = wBw(wB). This choice has no special meaning, but preserves the occurrence of 
bubble resonance for kU, /oB = 1 ,  with the advantage of making the plots for the 
damped case more readily comparable to the corresponding ones in the absence of 
damping. 

We now examine the-solution for the flow over wave-shaped surfaces with damped 
bubble dynamics. Since most of the phenomena manifest in the undamped solutions 
are still relevant, we shall limit ourselves to the illustration of the main differences 
introduced by the inclusion of dissipative effects. Let us again consider first the case 
of fixed wall geometry and variable free-stream velocity. The parameter IGI in figure 
7 ( a )  no longer goes to  zero and infinity a t  sonic and bubble resonance conditions; 
instead i t  passes through a minimum and a maximum, which separate the various 
flow regimes. The different behaviour of the solution in the subsonic, supersonic and 
super-resonant regimes is now reflected in the relative importance of the real and 
imaginary parts of G ,  which change rapidly a t  the transition from one regime to the 
next, as shown in figure 7. In  particular, the comparatively large value of Im (G) is 
related to the propagation of flow disturbances from the wall in the downstream 
direction a t  a relatively shallow angle, which is typical of the supersonic regime. On 
the other hand, the large value of Re (G) reflects the rapid attenuation of the flow 
disturbances propagating away from the wall, as happens in the subsonic and super- 
resonant cases. As expected, the flow response is no longer singular when energy 
dissipation is taken into account. The amplitudes of the bubble radius oscillation a t  
the wall (y = 0) for a semi-infinite flow are shown in figure 8 and simply display a first 
maximum a t  sonic conditions and a second more pronounced one corresponding to 
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FIGURE 7 .  (a)  and ( b )  imaginary part of the parameter G versus the square of the reduced frequency 
( ~ U , , / O ~ ) ~  for different values of o i / k 2 c i  NN 3a,/k2R,2 = 0.5 (A), 1 (0) and 2 (0). 

the bubble resonance. Similarly, in the bubble radius response of figure 9 for the 
channel flow case all but the lowest resonances due to  the internal motion are 
virtually eliminated by the presence of dissipative effects. The same phenomena were 
manifest when the free-stream velocity is fixed and the wall wavenumber is allowed 
to vary. 

In  all cases, increasing the void fraction substantially decreases the amplitude of 
bubble growth. As mentioned in the introduction, this phenomenon has been 
observed experimentally by Arakeri & Shanmuganathan (1985) and by M. Billet 
(1986, personal communication). It has important consequences for cavitation 
damage and noise. 

Clearly bubbly flows produce lifting forces on the boundaries when their shape 
determines a net vertical displacement of the flow. They also always produce surface 
drag even in the absence of viscous effects a t  the boundaries. This is another 
important consequence of the compressible nature of bubbly flows, which determines 
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FIGURE 8. Response of a semi-infinite damped bubbly flow over a wave-shaped wall as a function 
of the square of the reduced frequency ( ~ U , / W ~ ) ~ .  Normalized amplitudes of the bubble radius 
oscillations a t  the wall (y = 0) are shown for different values of the parameter w i / k 2 c ;  sz 
3a , /k2R~ = 0.5 (A), 1 (0) and 2 (0). 
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FIGURE 9. Response of a damped bubbly flow in a symmetric wavy-wall channel as a function of 
the square of the reduced frequency ( ~ U , / W , ) ~ .  Normalized amplitudes of the bubble radius 
oscillations at the wall (y = 0) are shown for wi/lczc2 x 3a,/k2R: = 1 and kb = n. 

the transfer of energy from the flow velociety to the bubble motion under the 
influence of the perturbations induced by the wall. Indeed, as we shall see later, not 
all boundary shapes produce lift, but any deviation from a straight wall profile 
generates a drag force. As an example, the drag coefficient G, = 2D/epU: based on 
the drag per unit depth D on a wall wavelength in a semi-infinite bubbly flow is 
plotted in figure 10 for three values of the Mach-number parameter U:/c%. For 
increasing free-stream velocities the drag is initially zero, reaches a maximum near 
the sonic condition and finally tends to zero in the super-resonant regime where 
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FIGURE 10. Drag coefficient C, = 2D/cpU; in a semi-infinite damped bubbly flow over a wave- 
shaped wall as a function of the square of the reduced frequency (kU,/o,)* for different values of 
the parameter wi/k2c:  x 3a,/k2R; = 0.5 (A), 1 (0) and 2 (0). 

compressibility effects asymptotically vanish. The lift on a wall wavelength in the 
same flow is identically zero, since no net vertical displacement of the flow is 
produced by a full period of the wall profile. 

Significant analogies exist between the results shown here for the case of bubbly 
flows over slender profiles and the ones previously obtained for the linearized 
dynamics of clouds of bubbles (d'Agostino & Brennen 1983). In  both flows the 
dispersive behaviour due to bubble dynamics effects is controlled by similar 
parameters, G2 and A', which depend on the bubble concentration and the excitation 
frequency. These parameters also determine the elliptic or hyperbolic nature of the 
solution, the penetration of external disturbances and the occurrence of the natural 
mode shapes and frequencies of the flow. 

Finally, as a concluding remark, it is easily verified that the above theory reduces 
(as expected) to  the first-order perturbation solutions for incompressible and 
homogeneous compressible flows in the limit for zero void fraction or free-stream 
velocity and zero wall wavenumber, respectively. 

6. Results for a single, Gaussian-shaped bump 
We now consider a semi-infinite bubbly flow over a slender surface with a 

Gaussian-shaped profile ~ ( x )  = 6 exp ( - x2/2a2)  of maximum height 8 < a. The 
Fourier transform, as defined by (39), is 

~ ( k )  = ( 2 / 7 c ) h  e-k2a2/2. 

As shown earlier, the solution for this flow is expressed by the inverse Fourier 
integrals (40). When dissipative effects are included the integrands have no 
singularities and are readily computed. It is convenient also in this case to define 
characteristic parameters whose values are related to the importance of sonic and 
bubble resonance effects. By analogy with the solution for a harmonic profile we can 
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FIGURE 11.  Response of a damped semi-infinite bubbly flow over a Gaussian-shaped profile as a 
function of the non-dimensional horizontal coordinate x/a. Normalized amplitudes of the bubble 
radius oscillations a t  the wall (y = 0) are shown for wgu2/n2ck = 1 and for ( U , ~ / u o , ) ~  = 0.5 (A),  
1 (El) and 2 (0)- 

anticipate that 2xlk will now be replaced by 2a, and the relevant parameters in the 
case of a Gaussian bump are o;a2/n2c; for dispersion effects and the square of the 
reduced frequency (U, n/awB)2 for the bubble resonance condition. 

The bubble radius response at the wall (y = 0) is shown in figure 11 for 
&a2/n2cf = 1 and for three values of the square of the reduced frequency, 
(U,  n/uo,J2. Note that for the lower value of the reduced frequency the bubble radius 
response is essentially in phase with the expected behaviour of the pressure a t  the 
wall in the fully wetted flow case. Bubble inertial effects are only reflected in the 
small delay which makes the curve slightly asymmetric with respect to the plane 
x = 0. However, when (U,7c/awB)2 = 1 bubble dynamic effects become more 
important and the bubbles no longer have the time to respond as in the previous case. 
The bubble radius simply goes through a minimum corresponding to the positive 
slope of the profile, followed by a maximum and a slow return to the unperturbed 
free-stream conditions. For the larger value of the reduced frequency the bubble 
response is further delayed and the bubbles are excited into damped oscillations 
which slowly subside further downstream. 

The bubble radius response in the channel flow case is illustrated in figure 12 for 
Icb = n, where the situation is modified by the presence of the internal flow modes of 
the system introduced by the finite spacing between the boundaries. For the lower 
value of the reduced frequency the behaviour is similar to the semi-infinite flow case. 
For higher values of ( U , n / a ~ ~ ) ~  this similarity is only restricted to the early stages 
of the bubble radius response. Later the internal flow modes of the system are excited 
and they variously interact to  produce the more complex oscillatory behaviour of the 
downstream portion of the flow. 

The propagation of wall-induced disturbances inside the semi-infinite flow over a 
Gaussian-shaped profile is illustrated in figure 13 which shows the bubble radius 
response at increasing distances from the wall : y = 0 , 5 a / ~  and 10a/n. The values of 
the parameters o; a2/n2c; = 1 and (U, n/awB)2 = 1 have been chosen in order to make 
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FIGURE 12. Response of a damped bubbly flow in a symmetric channel with Gaussian-shaped 
profile as a function of the non-dimensional horizontal coordinate x / a .  Normalized amplitudes of 
the bubble radius oscillations at the wall (y = 0) are shown for wia2/n2ck = 1 ,  kb = n and for 
( U o n / a ~ , ) 2  = 0.5 (A), 1 (0) and 2 (0). 
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FIGURE 13. Response of a damped semi-infinite bubbly flow over a Gaussian-shaped profile as a 
function of the non-dimensional horizontal coordinate x / a .  Normalized amplitudes of the bubble 
radius oscillations at various distances from the wall are shown for wia2/n2e$ = 1 ,  kb = II, 
(U,n/aw$ = 1 and y = 0 (A), 5a /n  (a) and 10a/n(O). 

both compressibility and bubble resonance effects important in this case. Hence the 
attenuation is relatively small, while the time delay of the bubble radius response a t  
increasing distances from the wall is significant. Also note the inhibiting action that 
the proximity of the wall plays on the amplitude of the bubble radius oscillations in 
the downstream part of the flow. 

The pressure distribution a t  the wall in the semi-infinite flow configuration, shown 
in figure 14 for (wia2/7c2c&) = 1 and for three values of the parameter 
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FIGURE 14. Response of a damped semi-infinite bubbly flow over a Gaussian-shaped profile as a 
function of the non-dimensional horizontal coordinate x / a .  Kormalized amplitudes of the pressure 
perturbation at the wall y = 0 are shown for w ~ a z / c ~ n 2  = 1 and for three different values of the 
parameter U;/ck  x 3 a o U t / w ~ R t  = 0.5 (A), 1 (0) and 2 (0). 
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FIGURE 15. Lift coefficient C, = 2L/epUi in a semi-infinite damped bubbly flow over a Gaussian- 
shaped profile as a function of the reduced frequency parameter ( U , n / ~ w , ) ~  for three different 
values of the parameter U;/e; % 3a, U i / w i  R; = 0.5 (A), 1 (0) and 2 (0). 

U i / c g  FZ 301, U i / o b  Ri, is similar to the bubble radius response, but exhibits a faster 
decay of the oscillations in the downstream region of the flow. Even a relatively small 
increase of the void fraction has 8 significant influence on the pressure distribution 
at the wall. In  particular it is interesting to observe that increasing the void fraction 
values moves the minimum pressure point downstream ; hence one would expect the 
laminar separation point to be similarly displaced downstream in real viscous flows. 
This consequence of the compressibility of the bubble mixture may well be 
responsible for the observed delay and even suppression of separation in travelling 
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FIGURE 16. Drag coefficient G, = 2D/cpUi in a semi-infinite damped bubbly flow over a Gaussian- 
shaped profile as a function of the reduced frequency parameter ( U o ~ / a ~ , ) 2  for three different 
values of the parameter U i / c L  zz 3a, U i / w i  Rt = 0.5 (A), 1 (a) and 2 (0). 

bubble cavitating flows over headforms with increased bubble content (Gates 1977). 
The lift and drag coefficients, C, = 2L/epU,2 and C, = 2D/epU,2, generated by the 
above pressure distributions are illustrated in figures 15 and 16 as a function of 
the reduced frequency parameter (U, n/aw,)2 for three values of the parameter 
U,2/ck x 3a, U i / o k  Ri. Here L and D are the lift and drag per unit depth on the wall 
profile. The behaviour of these coefficients is typical of compressible flows, with peaks 
near sonic conditions, followed by a rapid drop in the super-resonant regime, where 
only a thin layer of bubbles close to the boundary responds to the excitation. 

7. Limitations 
We now briefly examine the restrictions imposed to the previous theory by the 

various simplifying assumptions that have been made. Specifically we shall discuss 
the limitations due to the introduction of the continuum model of the flow, to the use 
of the linear perturbation approach in deriving the solution, to the neglect of the 
relative motion between the phases and of the local pressure perturbations in the 
neighbourhood of each individual bubble. I n  what follows we shall refer to the wavy- 
surface solution in the absence of damping, since it represents the most conservative 
case and the basis of the generalization to slender profiles of arbitrary shape. 

The perturbation approach simply requires that Q, << 1 in (17) ,  a constraint that 
can be satisfied far from the sonic and bubble resonance conditions with proper 
choice of kc and U,/w, R,. This is probably the most restrictive limitation of the 
present analysis. 

For the continuum approach to be valid, the two phases must be minutely 
dispersed with respect to  the shortest characteristic length of the flow, here either the 
wall wave-length or the penetration of the wall disturbances in the y-direction. 
Hence the average bubble spacing s = O(R,/ad) is required to satisfy the most 
restrictive of tJhe two conditions : ks < 1 and Re (G) ks < 1.  

In  order to estimate the error associated to the neglect of local pressure effects due 
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to the dynamic response of each individual bubble, we consider the pressure 
perturbation experienced by one bubble as a consequence of the growth or collapse 

where R = R,( 1 +v) is given by (19) or (23). To the same order of approximation used 
to develop the present analysis, comparison with the global pressure change 
expressed by (22 )  or (26) then shows that the local pressure perturbations are 
unimportant if 

Far from the bubble resonance regime, this condition is generally satisfied in low void 
fraction flows. 

Finally, in order to assess the error introduced by the neglect of the relative 
velocity between the two phases, let us consider the equation of motion for a bubble 
of negligible mass (Voinov 1973) with Stokes’ viscous drag: 

where v is the velocity of the liquid, vB is the velocity of the bubble and v is the 
kinematic viscosity of the liquid. Linearizing as before and assuming for both the 
relative velocity vr = ( u - v B )  and the velocity of the liquid a 2nlk-periodic solution 
in the x-direction, one obtains 

Hence we expect that relative motion effects are unimportant when kRi U,/v 4 1. 
Using the continuum hypothesis kR, 4 1, this condition actually requires that 
R, U,/v = O( l),  which is already implicit in the assumption of Stokes ’ viscous drag. 
Thus the relative motion between the phases can be neglected as long as Stokes’ 
expression correctly represents the drag on the bubbles. On the other hand, the 
above analysis does not allow us to assess to what extent this choice is justified. 
However, the more general simultaneous solution of the equations of motion for both 
phases, which we intend to discuss in a later publication, shows that the effect of 
relative motion is smaller than the above would suggest. It simply leads to a modified 
expression for the parameter G2 involving a factor where unity is added to the void 
fraction multiplied by the square of the right-hand side of (50). The presence of the 
void fraction multiplier further reduces the estimate of the effect of relative 
motion. 

We now briefly discuss the conditions for the effects of bubble dynamics and 
compressibility to become significant, showing that in general relatively high flow 
velocities and void fraction are required. As mentioned earlier, compressibility 
effects are expected to be important when the parameter ui a2/n2cL = 3a, a2/R,2 n2 is 
of order unity or greater, i.e. when: a, >, O(Ri/a2). For the validity of the present 
theory the typical dimension of the flow a must be much larger than the bubble size 
R,, say n/R, >, 10. Hence appreciable compressibility effects can take place when the 
void fraction is of the order of 0.01 or larger, a situation that can easily occur in 
practice. On the other hand, bubble dynamics effects become important when the 
reduced frequency parameter (U,rc/aw,)2 is of order unity or larger, i.e. when 
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U, 2 O(awB). Consider, for example, the case of air bubbles in water. Usually 
the surface tension has little influence on the bubble natural frequency, thus, 
from (13), wB = l O ( p , / p R ~ ) ~ ,  where for bubbles in equilibrium a t  about atmospheric 
pressure (p,/p)' x 10 m/s. Hence bubble dynamic effects are significant when 
U ,  2 O((a /R , ) (p , /p )~ ) ,  which requires the flow velocity to be of the order of 100 m/s 
or larger. Velocities of this magnitude are rare for objects moving inside liquids. The 
present linear theory therefore suggests that, unlike compressibility effects, 
important linear bubble dynamic phenomena are unlikely to be observed in most 
practical applications. However, the nonlinear response of the bubbles is cha- 
racterized by much larger timescales and therefore bubble dynamic effects may still 
occur in practice a t  substantially iower speeds than indicated by the present linear 
analysis. 

8. Conclusions 
As anticipated in the introduction and confirmed by the present theory, the 

dynamics of the bubbles is strongly coupled through the pressure and velocity fields 
with the overall dynamics of the flow. The presence of the bubbles is responsible for 
the occurrence of bubble resonance phenomena and for the drastic modification of 
the sonic speed in the medium, which decreases and becomes dispersive (frequency 
dependent). The sonic and bubble resonance conditions lead in turn to the 
identification of three different flow regimes, here designated as subsonic, supersonic 
and super-resonant. 

The inertial and resonance effects become important when the residence time of 
the bubbles is comparable with their typical response time: in the flows discussed 
here it is required that the reduced frequency parameter ( ~ U , / W , ) ~  for the flows with 
harmonic excitation of (Uon/awB)2 in the case of Gaussian excitation are of order 
unity. For this to happen relatively large flow velocities and bubble sizes are in 
general necessary. 

Similarly, the effects related to the sonic regime become important and 
significantly separated from the bubble resonance condition when the reciprocal of 
the dispersion parameter ( w k / k 2 c &  for the flow over a wavy wall with fixed geometry, 
Ui/ck for the flow over a wavy wall with fixed free-stream velocity, or w i  a2/n2cl  in 
the case of the Gaussian bump) is of order unity. For this to happen relatively large 
flow velocities and void fractions are in general necessary. 

In the present work only the energy dissipation occurring in the dynamics of the 
bubbles has been considered, which represents the most important damping 
mechanism in bubbly flows. Additional contributions to the energy dissipation from 
the relative motion between the bubbles and the surrounding liquid can be included 
in the model, but their effects are expected to be small. 

The results of this investigation reveal a number of qualitative effects which may 
be of importance in real cavitating flows around headforms or hydrofoils. First, an 
increase in the concentration of nuclei or bubbles causes a substantial reduction of 
the amplitude of growth of the bubbles as they are convected through a low-pressure 
region. We have already noted that such a phenomenon has been observed 
experimentally by Arakeri & Shanmuganathan (1985) and by Billet (1986, personal 
communication). This in turn could substantially reduce the acoustic noise or 
damage potential. Secondly, the compressibility of the flow produces a delay in the 
minimum pressure (and therefore in any laminar separation), a phenomenon noticed 
in the experiments of Gates (1977). This shift in the pressure distribution can also 
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generate drag, and similar changes in the lift coefficient could be anticipated for 
lifting surfaces. It remains to be seen whether this could help explain the well-known 
changes in lift and drag which result when cavitation is present. 

The present theory has been derived under fairly restrictive simplifying 
assumptions involving the flow geometry and the linearizat,ion of both the velocity 
field and the bubble dynamics. Therefore, it is not expected to provide a quantitative 
description of the behaviour of steady bubbly flows over slender surfaces, except 
perhaps in the acoustical limit. Large bubble radius perturbations occur in most 
flows of practical interest ; hence the most crucial limitation in the present paper is 
the linearization of the bubble dynamics, while the assumption of small velocity 
perturbations is likely to be more widely justified. If all the above linearizations were 
omitted only numerical solutions could be realistically attempted. However, if only 
the hypothesis of linear bubble dynamics is abandoned, the development of quasi- 
linear theories might be possible and would have a much broader applicability. 

Even the very simple geometry of the flows considered here can nevertheless 
provide an introduction to the study of flows of great technical interest. Flows with 
similar geometry occur in many fields of applied hydrodynamics such as the study 
of propellers, lifting surfaces, pump blades, and yet general theories have only been 
developed in the fully wetted and supercavitating cases. In  these flows the above 
theory might shed some light on the behaviour of the lift, drag and moment 
coefficients of the profiles, on the influence of the presence of the bubbles on 
boundary-layer development, on flow separation and other boundary viscous effects, 
on the problem of cavitation inception and its correlation to the nuclei number 
distribution of the liquid, and on the possible choice of more suitable parameters and 
laws for cavitation scaling. Finally, other more direct applications include the 
production and propagation of noise in cavitating flows. 
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